Unlikely Anti-Aromatases

Posted: April 18, 2010 in Lifestyle, Nutrition

Aromatase is “an enzyme involved in the production of estrogen that acts by catalyzing the conversion of testosterone (an androgen) to estradiol (an estrogen). Aromatase is located in estrogen-producing cells in the adrenal glands, ovaries, placenta, testicles, adipose (fat) tissue, and brain” (1).

Bodybuilders and physique enthusiasts frequently use these compounds to reduce estrogen, and negate the side effects often seen with with anabolic/androgenic compounds.

Common pharmaceutical anti-aromatases include Letrozole, Anastrozole, Exemestane, and others. Most people are also familiar with some over the counter ones, like ATD, chrysin, 6-OXO, and formestane.

There’s also some pretty common supplements that most people don’t realize can have a significant anti-aromatase effect. These compounds are probably not potent enough to stave off estrogen side effects if you’re pinning 1g of Test a week, or some of the stronger prohormones if you are susceptible to gynecomastia or other estrogen related problems, but they can be an effective tool for daily use to control aromatase for those that might have slightly elevated levels. For males, its not a bad idea to use an anti-aromatase compound frequently throughout the year as many common environmental toxins can disrupt the body’s sex hormones in favor of estrogen. And everything listed below can be used long term and doesn’t need to be cycled like the typical anti-aromatase compounds that tend to be a bit more harsh on the endocrine system.

(All of the study titles below are hyperlinked to the journal abstract)

Grape Seed Extract

Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds.

In breast cancer, in situ estrogen production has been demonstrated to play a major role in promoting tumor growth. Aromatase is the enzyme responsible for the conversion of androgen substrates into estrogens. This enzyme is highly expressed in breast cancer tissue compared with normal breast tissue. A wine extract fraction was recently isolated from red wine that exhibited a potent inhibitory action on aromatase activity. Using UV absorbance analysis, high-performance liquid chromatography profiling, accurate mass-mass spectrometry, and nanospray tandem mass spectrometry, most of the compounds in our red wine fraction were identified as procyanidin B dimers that were shown to be aromatase inhibitors. These chemicals have been found in high levels in grape seeds. Inhibition kinetic analysis on the most potent procyanidin B dimer has revealed that it competes with the binding of the androgen substrate with a K(i) value of 6 micro M. Because mutations at Asp-309, Ser-378, and His-480 of aromatase significantly affected the binding of the procyanidin B dimer, these active site residues are thought to be important residues that interact with this phytochemical. The in vivo efficacy of procyanidin B dimers was evaluated in an aromatase-transfected MCF-7 breast cancer xenograft model. The procyanidin B dimers were able to reduce androgen-dependent tumor growth, indicating that these chemicals suppress in situ estrogen formation. These in vitro and in vivo studies demonstrated that procyanidin B dimers in red wine and grape seeds could be used as chemopreventive agents against breast cancer by suppressing in situ estrogen biosynthesis.

Grape seed extract is an aromatase inhibitor and a suppressor of aromatase expression.

Aromatase is the enzyme that converts androgen to estrogen. It is expressed at higher levels in breast cancer tissues than normal breast tissues. Grape seed extract (GSE) contains high levels of procyanidin dimers that have been shown in our laboratory to be potent inhibitors of aromatase. In this study, GSE was found to inhibit aromatase activity in a dose-dependent manner and reduce androgen-dependent tumor growth in an aromatase-transfected MCF-7 (MCF-7aro) breast cancer xenograft model, agreeing with our previous findings. We have also examined the effect of GSE on aromatase expression. Reverse transcription-PCR experiments showed that treatment with 60 mug/mL of GSE suppressed the levels of exon I.3-, exon PII-, and exon I.6-containing aromatase mRNAs in MCF-7 and SK-BR-3 cells. The levels of exon I.1-containing mRNA, however, did not change with GSE treatment. Transient transfection experiments with luciferase-aromatase promoter I.3/II or I.4 reporter vectors showed the suppression of the promoter activity in a dose-dependent manner. The GSE treatment also led to the down-regulation of two transcription factors, cyclic AMP-responsive element binding protein-1 (CREB-1) and glucocorticoid receptor (GR). CREB-1 and GR are known to up-regulate aromatase gene expression through promoters I.3/II and I.4, respectively. We believe that these results are exciting in that they show GSE to be potentially useful in the prevention/treatment of hormone-dependent breast cancer through the inhibition of aromatase activity as well as its expression.

Vitamin D3

Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling.

Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active metabolite of vitamin D, inhibits the growth and induces the differentiation of many malignant cells including breast cancer (BCa) cells. Calcitriol exerts its anti-proliferative activity inBCa cells by inducing cell cycle arrest and stimulating apoptosis. Calcitriol also inhibits invasion, metastasis and tumor angiogenesis in experimental models of BCa. Our recent studies show additional newly discovered pathways of calcitriol action to inhibit the growth of BCa cells. Calcitriol suppresses COX-2 expression and increases that of 15-PGDH thereby reducing the levels and biological activity of prostaglandins (PGs). Calcitriol decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis selectively in BCa cells and the breast adipose tissue surrounding BCa, by a direct repression of aromatase transcription via promoter II as well as an indirect effect due to the reduction in the levels and biological activity of PGE(2), which is a major stimulator of aromatase transcription through promoter II in BCa. Calcitriol down-regulates the expression of estrogen receptor alpha and thereby attenuates estrogen signaling in BCa cells including the proliferative stimulus provided by estrogens. We hypothesize that the inhibition of estrogen synthesis and signaling by calcitriol and its anti-inflammatory actions will play an important role in the use of calcitriol for the prevention and/or treatment of BCa.

1alpha,25-Dihydroxyvitamin D3 down-regulates estrogen receptor abundance and suppresses estrogen actions in MCF-7 human breast cancer cells.

1alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the active metabolite of vitamin D, is a potent inhibitor of breast cancer cell growth. Because the estrogen receptor (ER) plays a key role in breast cancer progression, we have studied the effects of 1,25(OH)2D3 on the regulation of ER in the estrogen-responsive MCF-7 human breast cancer cell line, which is known to predominantly express ERalpha. 1,25(OH)2D3 causes significant inhibition of MCF-7 cell growth, and it also decreases the growth-stimulatory effect of 17beta-estradiol (E2). Treatment of MCF-7 cells with 1,25(OH)2D3 reduces ER levels in a dose-dependent manner, as shown by ligand binding assays and Western blot analysis. The 1,25(OH)2D3 analogues EB-1089, KH-1060, Ro 27-0574, and Ro 23-7553 are more potent than 1,25(OH)2D3 in both their antiproliferative actions as well as ER down-regulation. There is a striking correlation (R2 = 0.98) between the growth-inhibitory actions of 1,25(OH)2D3 or analogues and their ability to down-regulate ER levels. Treatment with 1,25(OH)2D3 shows that the reduction in ER is accompanied by a significant decrease in the steady-state levels of ER mRNA. The decrease in ER mRNA is not abolished by the protein synthesis inhibitor cycloheximide. Inhibition of mRNA synthesis with actinomycin D reveals no significant differences between ER mRNA half-life in control and 1,25(OH)2D3-treated cells. Nuclear run-on experiments demonstrate significant decreases in ER gene transcription at the end of 17 h of treatment with 1,25(OH)2D3. These findings indicate that 1,25(OH)2D3 exerts a direct negative effect on ER gene transcription. Coincident with the decrease in ER levels there is an attenuation of E2-mediated bioresponses after 1,25(OH)2D3 treatment. Induction of progesterone receptor by E2 is suppressed by 1,25(OH)2D3, and the E2-mediated increase in breast cancer susceptibility gene (BRCA1) protein is reduced by 1,25(OH)2D3 treatment. Overall, these results suggest that the antiproliferative effects of 1,25(OH)2D3 and its analogues on MCF-7 cells could partially be mediated through their action to down-regulate ER levels and thereby attenuate estrogenic bioresponses, including breast cancer cell growth.

Pomegranate

Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer.

Fresh organically grown pomegranates (Punica granatum L.) of the Wonderful cultivar were processed into threecomponents: fermented juice, aqueous pericarp extract and cold-pressed or supercritical CO2-extracted seed oil. Exposure to additional solvents yielded polyphenol-rich fractions (‘polyphenols’) from each of the three components. Their actions, and of the crude whole oil and crude fermented and unfermented juice concentrate, were assessed in vitro for possible chemopreventive or adjuvant therapeutic potential in human breast cancer. The ability to effect a blockade of endogenous active estrogen biosynthesis was shown by polyphenols from fermented juice, pericarp, and oil, which inhibited aromatase activity by 60-80%. Fermented juice and pericarp polyphenols, and whole seed oil, inhibited 17-beta-hydroxysteroid dehydrogenase Type 1 from 34 to 79%, at concentrations ranging from 100 to 1,000 microg/ml according to seed oil >> fermented juice polyphenols > pericarp polyphenols. In a yeast estrogen screen (YES) lyophilized fresh pomegranate juice effected a 55% inhibition of the estrogenic activity of 17-beta-estradiol; whereas the lyophilized juice by itself displayed only minimal estrogenic action. Inhibition of cell lines by fermented juice and pericarp polyphenols was according to estrogen-dependent (MCF-7) >> estrogen-independent (MB-MDA-231) > normal human breast epithelial cells (MCF-10A). In both MCF-7 and MB-MDA-231 cells, fermented pomegranate juice polyphenols consistently showed about twice the anti-proliferative effect as fresh pomegranate juice polyphenols. Pomegranate seed oil effected 90% inhibition of proliferation of MCF-7 at 100 microg/ml medium, 75% inhibition of invasion of MCF-7 across a Matrigel membrane at 10 microg/ml, and 54% apoptosis in MDA-MB-435 estrogen receptor negative metastatic human breast cancer cells at 50 microg/ml. In a murine mammary gland organ culture, fermented juice polyphenols effected 47% inhibition of cancerous lesion formation induced by the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). The findings suggest that clinical trials to further assess chemopreventive and adjuvant therapeutic applications of pomegranate in human breast cancer may be warranted.

1. Medicine Net: http://www.medterms.com/script/main/art.asp?articlekey=15844

Advertisements
Comments
  1. Brad says:

    Marc,
    If I were to start taking Grape Seed and D3 for the anti-aromatase reasons, what should each be dosed at? Based on reading M&M, it sounds like 100mg twice per day for Grape Seed, and about 3,000 IU per day for D3. And I already get 1,000 IU of D3 from my multi, so 4,000 a day may be too much.
    Any special directions as far as timing? Morning or night? With food or without?
    Thanks a lot for your help.

  2. fitport says:

    I like 100mg 2x/day of Grape Seed on an empty stomach, and 4,000IU Vit D 1x/day with fat. Your extra 1,000IU from the multi won’t be a problem. You can halve your dose on days with adequate sun exposure.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s